The transition towards renewable energies: physical limits and temporal conditions

Iñigo Capellán-Pérez
(inigo.capellan@ehu.es)

Klimagune Workshop, Bilbao 19th 2013
Motivation (I)

• Fossil fuels: around 85% of:
 • total primary energy
 • anthropogenic CO₂ emissions

• Subject to depletion:
 - Large, «Easy» fields:
 - High (E & €) profitability
 - Cheap energy
 - Small, «Difficult» fields:
 - Low (E & €) profitability
 - Expensive energy

Diminishing returns
Motivation (I)

• Fossil fuels: around 85% of:
 • total primary energy
 • anthropogenic CO₂ emissions

• Subject to depletion:
 - Large, «Easy» fields:
 - High (E & €) profitability
 - Cheap energy
 - Small, «Difficult» fields:
 - Low (E & €) profitability
 - Expensive energy

[Diminishing returns]

[WE02013]
Motivation (II)

- Fossil fuels: oil

![Total oil extraction profiles from different authors](chart.png)

...peak before 2020...

Updated from [Mediavilla2013]
Motivation (II)

- Fossil fuels: oil

Total oil extraction profiles from different authors

Oil production becomes less crude

World oil production by type in the New Policies Scenario

Global oil production reaches 96 mb/d in 2035 on the back of rising output of natural gas liquids & unconventional oil, as crude oil production plateaus

[ASPO 2009]

Updated from [Mediavilla2013]
Motivation (II)

- Fossil fuels: gas

Updated from [Mediavilla2013]
Motivation (II)

- Fossil fuels: coal

Updated from [Mediavilla2013]

higher uncertainties; BUT....
Opportunities (I)

• Energy transition to avoid dangerous climate change:

 The consideration of geological restrictions invalidates high IPPC SRES scenarios.

 HOWEVER, From SRES 2000, the impacts have been revised upwards (e.g. [IPCC2014], [Smith 2009]).
Opportunities (II)

• Energy transition to overcome the fossil-based model: reduction of the economic vulnerability:
 • to price shocks,
 • external dependency.

(e.g. [Hamilton 2011]: 10/11 US recessions associated with oil price spikes)
Challenges & barriers (I)

1. Renewable energies deployment paths?
Challenges & barriers (I)

1. Renewable energies deployment paths?

![Graph showing TPE extraction (1) with lines for Historic demand, Renewables, Coal, Gas, and Oil from 1990 to 2050.]
Challenges & barriers (I)

1. Renewable energies deployment paths?
Challenges & barriers (I)

1. Renewable energies deployment paths?
Challenges & barriers (I)

1. Renewable energies deployment paths?

Paths: dependent on demand, technology, policies, potential, etc.
Challenges & barriers (II)

2. Renewable ("low") densities & potentials:

\[
\text{Net power} = \text{Gross power} \cdot \left(1 - \frac{1}{\text{EROI}}\right)
\]

\(\text{(maximum) Net power density}\)

- 150 W/m²
- Solar irradiance
- 168

\(\begin{array}{c|c}
\text{Fossil fuels} & 25 \\
\text{Solar (theoretical)} & 3.3 \\
\text{Solar (real)} & 5 \\
\text{Solar future (real)} & 2 \\
\text{Wind} & <0.1 \\
\text{Biofuels (real)} & \end{array}\)

\[\text{e.g. 100 Mha} \approx 130 \text{ EJ/yr.}\]

WIND. Application of 1st law of conservation of energy \(\approx < 35 \text{ EJ/yr.}\)

[de Castro 2011, 2013a, 2013b]
Challenges & barriers (I)

1. Renewable energies deployment paths?

![Graph showing energy sources and demand](image)
Challenges & barriers (III)

3. Most critical sector: Transport (95% oil)

Oil substitution policies: biofuels, Electric & Hybrid car, efficiency improvement, CTL, GTL,

(only) technological change might not be enough

[Mediavilla2013]
Proposals

• **Urgent action:**
 - Peakoil & CO2 exponential trends,
 - Transport: critical sector,
 - Oil substitution rate < oil decline rate,
 - (only) technological solutions might not be enough.

• **Climate change mitigation & fossil fuels depletion** *anticipation synergies:*
 - “Effective” (high+sustained) carbon prices,
 - Renewables development (! potentials),
Thank you very much
References