

Instituto de Investigación Tecnológica - IIT

Potential options for mitigation of climate change from the energy and transport sectors

Pedro Linares

BC3 Summer School

San Sebastián, July 10th 2013

Global GHG emissions

Spain and the US, 2011

Mitigation options

CO₂ abatement	2020	2035
Activity	2%	2%
End-use efficiency	18%	13%
Power plant efficiency	3%	2%
Electricity savings	50%	27%
Fuel and technology switching in end-uses	2%	3%
Renewables	15%	23%
Biofuels	2%	4%
Nuclear	5%	8%
CCS	4%	17%
Total (Gt CO ₂)	3.1	15.0

Source: IEA World Energy Outlook 2012

Behavioral vs Technological

Potentials and carbon prices

Figure SPM 6: Estimated sectoral economic potential for global mitigation for different regions as a function of carbon price in 2030 from bottom-up studies, compared to the respective baselines assumed in the sector assessments. A full explanation of the derivation of this figure is found in 11.3.

Assessing costs and potentials

It is easy to overestimate potentials and underestimate costs

- Counterfactual scenarios
- Public vs Private perspectives
 - Discount rates
 - Taxes
- Interactions between options
- Rebound effect
- Bottom-up vs. Top-down

The McKinsey curve

Note: The curve presents an estimate of the maximum potential of all technical GHG abatement measures below €60 per tCO₂e if each lever was pursued aggressively. It is not a forecast of what role different abatement measures and technologies will play. Source: Global GHG Abatement Cost Curve v2.0

The Economics for Energy curve

- Expert-based
- Only technological changes
- Interaction between options
- Private and public perspectives
- 80% of energy consumption in Spain
- How to translate energy into GHG mitigation?
 - Electricity: 0.3 tCO2/MWh
 - Transport: 0.25 tCO2/MWh

Counterfactual scenario

"Strong policy" scenario

"Advanced technology" scenario

Why don't we use negative cost measures?

- The energy-efficiency paradox
- Non-monetary barriers
 - Hidden or transaction costs
 - Lack of awareness
 - Inertia
 - Risk premium
 - The problem is not economic: subsidies may be useless

Why do some measures look so expensive?

- Lack of the right information
 - Very difficult to get reliable data (non-ETS)
 - Data aggregation: there may be niches
- Multiple objectives (e.g., buildings)
 - How to allocate the costs?
- Interaction between measures

Priority options

- Efficient / Hybrid vehicles
- Efficient lighting
- Modal change in transport
- Efficient heating & cooling
- Solar water

- Other studies get much better results
- Rehabilitation of buildings might be interesting if other factors are considered (and also its great potential for reduction)

Conclusions

- Large abatement potential in the energy and transport sector
 - Technology change has a limited range
 - We need behavioral changes
- The cost may be very low, even negative
- In other cases, the cost is very high
 - But other factors can be considered
- Results depend very much on fuel prices
- General lack of data for these analyses

economics_{for} energy

Thanks!

www.upcomillas.es/personal/pedrol